RSS

Pertumbuhan Mikroba

27 Mar

       Pertumbuhan adalah penambahan secara teratur semua komponen sel suatu mikroba. Pembelahan sel adalah hasil dari pembelahan sel. Pada mikroba bersel tunggal (uniseluler), pembelahan atau perbanyakan sel merupakan pertambahan jumlah individu. Misalnya pembelahan sel pada bakteri akan menghasilkan pertambahan jumlah sel bakteri itu sendiri. Pada mikroba bersel banyak (multiseluler), pembelahan sel tidak menghasilkan pertambahan jumlah individunya, tetapi hanya merupakan pembentukan jaringan atau bertambah besar mikrobanya. Dalam membahas pertumbuhan mikrobia harus dibedakan antara pertumbuhan masing-masing individu sel dan pertumbuhan kelompok sel atau pertumbuhan populasi.

A. Pertumbuhan Populasi 

        Pertumbuhan dapat diamati dari meningkatnya jumlah sel atau massa sel (berat kering sel). Pada umumnya bakteri dapat memperbanyak diri dengan pembelahan biner, yaitu dari satu sel membelah menjadi 2 sel baru, maka pertumbuhan dapat diukur dari bertambahnya jumlah sel. Waktu yang diperlukan untuk membelah diri dari satu sel menjadi dua sel sempurna disebut waktu generasi. Waktu yang diperlukan oleh sejumlah sel atau massa sel menjadi dua kali jumlah/massa sel semula disebut doubling time atau waktu penggandaan. Waktu penggandaan tidak sama antara berbagai mikrobia, dari beberapa menit, beberapa jam sampai beberapa hari tergantung kecepatan pertumbuhannya. Kecepatan pertumbuhan merupakan perubahan jumlah atau massa sel per unit waktu.

B. Pengukuran Pertumbuhan

        Pertumbuhan diukur dari perubahan jumlah sel atau berat kering massa sel. Jumlah sel dapat dihitung dari jumlah sel total yang tidak membedakan jumlah sel hidup atau mati, dan jumlah sel hidup (viable count). Jumlah total sel mikrobia dapat ditetapkan secara langsung dengan pengamatan mikroskopis, dalam bentuk sampel kering yang diletakkan di permukaan gelas benda (slide) dan dalam sampel cairan yang diamati menggunakan metode counting chamber, misalnya dengan alat Petroff-Hausser Bacteria Counter (PHBC) untuk menghitung bakteri atau dengan alat haemocytometer untuk menghitung khamir, spora, atau sel-sel yang ukurannya relatif lebih besar dari bakteri.  Jumlah sel hidup dapat ditetapkan dengan metode plate count atau colony count, dengan cara ditaburkan pada medium agar sehingga satu sel hidup akan tumbuh membentuk satu koloni, jadi jumlah koloni dianggap setara dengan jumlah sel. Cara ini ada dua macam, yaitu metode taburan permukaan (spread plate method) dan metode taburan (pour plate method). Cara lain untuk menghitung jumlah sel hidup adalah dengan filter membran dan MPN (Most Probable Number) yang menggunakan medium cair. Sampel mikrobia yang dihitung biasanya dibuat seri pengenceran.  Pertumbuhan sel dapat diukur dari massa sel dan secara tidak langsung dengan mengukur turbiditas cairan medium tumbuh. Massa sel dapat dipisahkan dari cairan mediumnya menggunakan alat sentrifus (pemusing) sehingga dapat diukur volume massa selnya atau diukur berat keringnya (dikeringkan dahulu dengan pemanasan pada suhu 90-1100C semalam). Umumnya berat kering bakteri adalah 10-20 % dari berat basahnya.  Turbiditas dapat diukur menggunakan alat photometer (penerusan cahaya), semakin pekat atau semakin banyak populasi mikrobia maka cahaya yang diteruskan semakin sedikit. Turbiditas juga dapat diukur menggunakan spektrofotometer (optical density/ OD), yang sebelumnya dibuat kurva standart berdasarkan pengukuran jumlah sel baik secara total maupun yang hidup saja atau berdasarkan berat kering sel. Unit photometer atau OD proporsional dengan massa sel dan juga jumlah sel, sehingga cara ini dapat digunakan untuk memperkirakan jumlah atau massa sel secara tidak langsung.

C. Pertumbuhan Populasi Mikroba 

      Suatu bakteri yang dimasukkan ke dalam medium baru yang sesuai akan tumbuh memperbanyak diri. Jika pada waktu-waktu tertentu jumlah bakteri dihitung dan dibuat grafik hubungan antara jumlah bakteri dengan waktu maka akan diperoleh suatu grafik atau kurva pertumbuhan. Pertumbuhan populasi mikrobia dibedakan menjadi dua yaitu biakan sistem tertutup (batch culture) dan biakan sistem terbuka (continous culture).  Pada biakan sistem tertutup, pengamatan jumlah sel dalam waktu yang cukup lama akan memberikan gambaran berdasarkan kurva pertumbuhan bahwa terdapat fase-fase pertumbuhan. Fase pertumbuhan dimulai pada fase permulaan, fase pertumbuhan yang dipercepat, fase pertumbuhan logaritma (eksponensial), fase pertumbuhan yang mulai dihambat, fase stasioner maksimum, fase kematian dipercepat, dan fase kematian logaritma.  Pada fase permulaan, bakteri baru menyesuaikan diri dengan lingkungan yang baru, sehingga sel belum membelah diri. Sel mikrobia mulai membelah diri pada fase pertumbuhan yang dipercepat, tetapi waktu generasinya masih panjang. Fase permulaan sampai fase pertumbuhan dipercepat sering disebut lag phase. Kecepatan sel membelah diri paling cepat terdapat pada fase pertumbuhan logaritma atau pertumbuhan eksponensial, dengan waktu generasi pendek dan konstan. Selama fase logaritma, metabolisme sel paling aktif, sintesis bahan sel sangat cepat dengan jumlah konstan sampai nutrien habis atau terjadinya penimbunan hasil metabolisme yang menyebabkan terhambatnya pertumbuhan. Selanjutnya pada fase pertumbuhan yang mulai terhambat, kecepatan pembelahan sel berkurang dan jumlah sel yang mati mulai bertambah.  Pada fase stasioner maksimum jumlah sel yang mati semakin meningkat sampai terjadi jumlah sel hidup hasil pembelahan sama dengan jumlah sel yang mati, sehingga jumlah sel hidup konstan, seolah-olah tidak terjadi pertumbuhan (pertumbuhan nol). Pada fase kematian yang dipercepat kecepatan kematian sel terus meningkat sedang kecepatan pembelahan sel nol, sampai pada fase kematian logaritma maka kecepatan kematian sel mencapai maksimal, sehingga jumlah sel hidup menurun dengan cepat seperti deret ukur. Walaupun demikian penurunan jumlah sel hidup tidak mencapai nol, dalam jumlah minimum tertentu sel mikrobia akan tetap bertahan sangat lama dalam medium tersebut. 

D. Analisis Pertumbuhan Eksponensial 

Untuk menganalisis pertumbuhan eksponensial dapat menggunakan grafik pertumbuhan atau dengan perhitungan secara matematis.

Rumus matematika pertumbuhan menggunakan persamaan diferensial:  dX / dt = µX (1) X: jumlah sel / komponen sel spesifik (protein)  µ: konstanta kecepatan pertumbuhan   Dalam bentuk logaritma dengan bilangan dasar e, rumus yang menggambarkan aktivitas populasi mikrobia dalam biakan sistem tertutup adalah:  ln X = ln X0 + µ(t) (2) X0: jumlah sel pada waktu nol, X: jumlah sel pada waktu t, t: waktu pertumbuhan  diamati.   Dalam bentuk antilogaritma menjadi:  X = X0eµt (3)    Untuk memperkirakan kerapatan populasi pada waktu yang akan datang dengan µ sebagai konstante pertumbuhan yang berlaku. Parameter penting untuk konstante pertumbuhan populasi secara eksponensial adalah waktu generasi (waktu penggandaan). Penggandaan populasi terjadi saat X / X0 =2, sehingga rumus (3) menjadi:  2 = eµ (t generasi) (4)   Dalam bentuk logaritma dengan bilangan dasar e:  µ = ln 2 / t generasi = 0,693 / t generasi (5) 

Waktu generasi (t generasi) dapat digunakan untuk mengetahui parameter lain, seperti k( konstante kecepatan pertumbuhan) sebagai berikut:  k = 1 / t generasi (6)   Untuk biakan sistem tertutup, kombinasi persamaan 5 dan 6 menunjukkan bahwa 2  konstante kecepatan pertumbuhan µ dan k saling berhubungan:  µ = 0,693 k (7)   µ dan k, keduanya menggambarkan proses pertumbuhan yang sama dari peningkatan populasi secara eksponensial. Perbedaan diantaranya adalah, µ merupakan konstante kecepatan pertumbuhan yang berlaku, yang digunakan untuk memperkirakan kecepatan pertumbuhan populasi dari masing-masing aktivitas sel individual dan dapat digunakan untuk mengetahui dinamika pertumbuhan secara teoritis, sedang k adalah nilai rata-rata populasi pada periode waktu terbatas, yang menggambarkan asumsi rata-rata pertumbuhan populasi. 

E. Biakan Sistem Terbuka (Continuous culture) dalam Khemostat 

       Di dalam sistem ini, sel dapat dipertahankan terus menerus pada fase pertumbuhan eksponensial / fase pertumbuhan logaritma. Continuous culture mempunyai ciri ukuran populasi dan kecepatan pertumbuhan dapat diatur pada nilai konstan menggunakan khemostat. Untuk mengatur proses di dalam khemostat, diatur kecepatan aliran medium dan kadar substrat (nutrien pembatas). Sebagai nutrien pembatas dapat menggunakan sumber C (karbon), sumber N atau faktor tumbuh.  Pada sistem ini , ada aliran keluar untuk mempertahankan volume biakan dalam khemostat sehingga tetap konstan (misal V ml). Jika aliran masuk ke dalam tabung biakan adalah W ml/jam, maka kecepatan pengenceran kultur adalah D = W/V per jam. D disebut sebagai kecepatan pengenceran (dilution rate). Populasi sel dalam tabung biakan dipengaruhi oleh peningkatan populasi sebagai hasil pertumbuhan dan pengenceran kadar sel sebagai akibat penambahan medium baru dan pelimpahan aliran keluar tabung biakan. Kecepatan pertumbuhannya dirumuskan sebagai berikut:  dX/dt = µ X – DX = (µ – D) X.  Pada keadaan mantap (steady state), maka µ = D, sehingga dX/dt = 0. Dengan sistem ini sel seolah-olah dibuat dalam keadaan setengah kelaparan, dengan nutreian pembatas. Kadar nutrien yang rendah menyebabkan kecepatan pertumbuhan berbandng lurus dengan kadar nutrien atau substrat tersebut, sehingga kecepatan pertumbuhan adalah sebagai fungsi konsentrasi nutrien, dengan persamaan:  µ = µmax S / (Ks + S) 

µmax: kecepatan pertumbuhan pada keadaan nutrien berlebihan 

S : konstante nutrien  Ks : konstante pada konsentrasi nutrien saat µ = ½ µmax.  

Aktivitas mikroba dipengaruhi oleh faktor-faktor lingkungannya. Perubahan lingkungan dapat mengakibatkan perubahan sifat morfologi dan fisiologi mikroba. beberapa kelompok mikroba sangat resisten terhadap perubahan faktor lingkungan. Mikroba tersebut dapat dengan cepat menyesuaikan diri dengan kondisi baru tersebut. Faktor lingkungan meliputi faktor-faktor abiotik (fisika dan kimia), dan faktor biotik. 

FAKTOR ABIOTIK 

1.Suhu 

a. Suhu pertumbuhan

        Pertumbuhan mikroba memerlukan kisaran suhu tertentu. Kisaran suhu pertumbuhan dibagi menjadi suhu minimum, suhu optimum, dan suhu maksimum. Suhu minimum adalah suhu terendah tetapi mikroba masih dapat hidup. Suhu optimum adalah suhu paling baik untuk pertumbuhan mikroba.  Suhu maksimum adalah suhu tertinggi untuk kehidupan mikroba. Berdasarkan kisaran suhu pertumbuhannya, mikroba dapat dikelompokkan menjadi mikroba psikrofil (kriofil), mesofil, dan termofil. Psikrofil adalah kelompok mikroba yang dapat tumbuh pada suhu 0-300C dengan suhu optimum sekitar 150C.  Mesofil adalah kelompok mikroba pada umumnya, mempunyai suhu minimum 150C suhu optimum 25-370C dan suhu maksimum 45-550C. Mikroba yang tahan hidup pada suhu tinggi dikelompokkan dalam mikroba termofil.  Mikroba ini mempunyai membran sel yang mengandung lipida jenuh, sehingga titik didihnya tinggi. Selain itu dapat memproduksi protein termasuk enzim yang tidak terdenaturasi pada suhu tinggi. Di dalam DNA-nya mengandung guanin dan sitosin dalam jumlah yang relatif besar, sehingga molekul DNA tetap stabil pada suhu tinggi. 

Kelompok ini mempunyai suhu minimum 40 0C, optimum pada suhu 55-60 0C dan suhu maksimum untuk pertumbuhannya 75 0C.  Untuk mikroba yang tidak tumbuh dibawah suhu 30 0C dan mempunyai suhu pertumbuhan optimum pada 60 0C, dikelompokkan kedalam mikroba termofil obligat. Untuk mikroba termofil yang dapat tumbuh dibawah suhu 30 0C, dimasukkan kelompok mikroba termofil fakultatif. Bakteri yang hidup di dalam tanah dan air, umumnya bersifat mesofil, tetapi ada juga yang dapat hidup diatas 50 0C (termotoleran). Contoh bakteri termotoleran adalah Methylococcus capsulatus. Contoh bakteri termofil adalah Bacillus, Clostridium, Sulfolobus, dan bakteri pereduksi sulfat/sulfur. Bakteri yang hidup di laut (fautotrof) dan bakteri besi (Gallionella) termasuk bakteri psikrofil.  

b. Suhu tinggi 

     Apabila mikroba dihadapkan pada suhu tinggi diatas suhu maksimum, akan memberikan beberapa macam reaksi. 

(1) Titik kematian thermal, adalah suhu yang dapat memetikan spesies mikroba dalam waktu 10 menit pada kondisi tertentu. 

(2) Waktu kematian thermal, adalah waktu yang diperlukan untuk membunuh suatu spesies mikroba pada suatu suhu yang tetap. Faktor-faktor yang mempengaruhi titik kematian thermal ialah waktu, suhu, kelembaban, spora, umur mikroba, pH dan komposisi medium.

c. Suhu rendah 

        Apabila mikroba dihadapkan pada suhu rendah dapat menyebabkan gangguan metabolisme. Skibat-akibatnya adalah

(1) Cold shock, adalah penurunan suhu yang tiba-tiba menyebabkan kematian bakteri, terutama pada bakteri muda atau pada fase logaritmik,

(2) Pembekuan (freezing), adalah rusaknya sel dengan adanya kristal es di dalam air intraseluler,

(3) Lyofilisasi , adalah proses pendinginan dibawah titik beku dalam keadaan vakum secara bertingkat. Proses ini dapat digunakan untuk mengawetkan mikroba karena air protoplasma langsung diuapkan tanpa melalui fase cair (sublimasi).  

2. Kandungan air (pengeringan).

Setiap mikroba memerlukan kandungan air bebas tertentu untuk hidupnya, biasanya diukur dengan parameter aw (water activity) atau kelembaban relatif. Mikroba umumnya dapat tumbuh pada aw 0,998-0,6. bakteri umumnya memerlukan aw 0,90-0,999. Mikroba yang osmotoleran dapat hidup pada aw terendah (0,6) misalnya khamir Saccharomyces rouxii. Aspergillus glaucus dan jamur benang lain dapat tumbuh pada aw 0,8. Bakteri umumnya memerlukan aw atau kelembaban tinggi lebih dari 0,98, tetapi bakteri halofil hanya memerlukan aw 0,75. Mikroba yang tahan kekeringan adalah yang dapat membentuk spora, konidia atau dapat membentuk kista.

3. Tekanan osmosis

       Tekanan osmosis sebenarnya sangat erat hubungannya dengan kandungan air. Apabila mikroba diletakkan pada larutan hipertonis, maka selnya akan mengalami plasmolisis, yaitu terkelupasnya membran sitoplasma dari dinding sel akibat mengkerutnya sitoplasma. Apabila diletakkan pada larutan hipotonis, maka sel mikroba akan mengalami plasmoptisa, yaitu pecahnya sel karena cairan masuk ke dalam sel, sel membengkak dan akhirnya pecah.  Berdasarkan tekanan osmosis yang diperlukan dapat dikelompokkan menjadi

(1) mikroba osmofil, adalah mikroba yang dapat tumbuh pada kadar gula tinggi,

(2) mikroba halofil, adalah mikroba yang dapat tumbuh pada kadar garam halogen yang tinggi,

(3) mikroba halodurik, adalah kelompok mikroba yang dapat tahan (tidak mati) tetapi tidak dapat tumbuh pada kadar garam tinggi, kadar garamnya dapat mencapai 30 %. Contoh mikroba osmofil adalah beberapa jenis khamir. Khamir osmofil mampu tumbuh pada larutan gula dengan konsentrasi lebih dari 65 % wt/wt (aw = 0,94). Contoh mikroba halofil adalah bakteri yang termasuk Archaebacterium, misalnya Halobacterium. Bakteri yang tahan pada adar garam inggi, umumnya mempunyai kandungan KCl ang tinggi dalam selnya. Selain itu bakteri ini memerlukan konsentrasi Kalium yang tinggi untuk stabilitas ribosomnya. Bakteri halofil ada yang mempunyai membran purple bilayer, dinding selnya terdiri dari murein, sehingga tahan terhadap ion Natrium.  

4. Ion-ion dan listrik 

a. Kadar ion hidrogen (pH). 

       Mikroba umumnya menyukai pH netral (pH 7). Beberapa bakteri dapat hidup pada pH tinggi (medium alkalin). Contohnya adalah bakteri nitrat, rhizobia, actinomycetes, dan bakteri pengguna urea. Hanya beberapa bakteri yang bersifat toleran terhadap kemasaman, misalnya Lactobacilli, Acetobacter, dan Sarcina ventriculi. Bakteri yang bersifat asidofil misalnya Thiobacillus. Jamur umumnya dapat hidup pada kisaran pH rendah. Apabila mikroba ditanam pada media dengan pH 5 maka pertumbuhan didominasi oleh jamur, tetapi apabila pH media 8 maka pertumbuhan didominasi oleh bakteri. 

Berdasarkan pH-nya mikroba dapat dikelompokkan menjadi 3 yaitu(a) mikroba asidofil, adalah kelompok mikroba yang dapat hidup pada pH 2,0-5,0, (b) mikroba mesofil (neutrofil), adalah kelompok mikroba yang dapat hidup pada pH 5,5-8,0, dan (c) mikroba alkalifil, adalah kelompok mikroba yang dapat hidup pada pH 8,4-9,5.

b. Buffer 

    Untuk menumbuhkan mikroba pada media memerlukan pH yang konstan, terutama pada mikroba yang dapat menghasilkan asam. Misalnya Enterobacteriaceae dan beberapa Pseudomonadaceae. Oleh karenanya ke dalam medium diberi tambahan buffer untuk menjaga agar pH nya konstan. Buffer merupakan campuran garam mono dan dibasik, maupun senyawa-senyawa organik amfoter. Sebagai contoh adalah buffer fosfat anorganik dapat mempertahankan pH diatas 7,2. Cara kerja buffe adalah garam dibasik akan mengadsorbsi ion H+ dan garam monobasik akan bereaksi dengan ion OH  

c. Ion-ion lain Logam berat seperti Hg, Ag, Cu, Au, dan Pb pada kadar rendah dapat bersifat meracun (toksis).

       Logam berat mempunyai daya oligodinamik, yaitu daya bunuh logam berat pada kadar rendah. Selain logam berat, ada ion-ion lain yang dapat mempengaruhi kegiatan fisiologi mikroba, yaitu ion sulfat, tartrat, klorida, nitrat, dan benzoat. Ion-ion tersebut dapat mengurangi pertumbuhan mikroba tertentu. Oleh karena itu sering digunakan untuk mengawetkan suatu bahan, misalnya digunakan dalam pengawetan makanan. Ada senyawa lain yang juga mempengaruhi fisiologi mikroba, misalnya asam benzoat, asam asetat, dan asam sorbat.  

d. Listrik 

     Listrik dapat mengakibatkan terjadinya elektrolisis bahan penyusun medium pertumbuhan. Selain itu arus listrik dapat menghasilkan panas yang dapat mempengaruhi pertumbuhan mikroba. Sel mikroba dalam suspensi akan mengalami elektroforesis apabila dilalui arus listrik. Arus listrik tegangan tinggi yang melalui suatu cairan akan menyebabkan terjadinya shock karena tekanan hidrolik listrik. Kematian mikroba akibat shock terutama disebabkan oleh oksidasi. Adanya radikal ion dari ionisasi radiasi dan terbentuknya ion logam dari elektroda juga menyebabkan kematian mikroba. 

e. Radiasi 

    Radiasi menyebabkan ionisasi molekul-molekul di dalam protoplasma. Cahaya umumnya dapat merusak mikroba yang tidak mempunyai pigmen fotosintesis. Cahaya mempunyai pengaruh germisida, terutama cahaya bergelombang pendek dan bergelombang panjang. Pengaruh germisida dari sinar bergelombang panjang disebabkan oleh panas yang ditimbulkannya, misalnya sinar inframerah. Sinar x (0,005-1,0 Ao), sinar ultra violet (4000-2950 Ao), dan sinar radiasi lain dapat membunuh mikroba. Apabila tingkat iradiasi yang diterima sel mikroba rendah, maka dapat menyebabkan terjadinya mutasi pada mikroba. 

f. Tegangan muka 

Tegangan muka mempengaruhi cairan sehingga permukaan cairan tersebut menyerupai membran yang elastis. Seperti telah diketahui protoplasma mikroba terdapat di dalam sel yang dilindungi dinding sel, maka apabilaada perubahan tegangan muka dinding sel akan mempengaruhi pula permukaan protoplasma. Akibat selanjutnya dapat mempengaruhi pertumbuhan mikroba dan bentuk morfologinya. Zat-at seperti sabun, deterjen, dan zat-zat pembasah (surfaktan) seperti Tween80 dan Triton A20 dapat mengurangi tegangan muka cairan/larutan. Umumnya mikroba cocok pada tegangan muka yang relatif tinggi.  

g. Tekanan hidrostatik 

      Tekanan hidrostatik mempengaruhi metabolisme dan pertumbuhan mikroba. Umumnya tekanan 1-400 atm tidak mempengaruhi atau hanya sedikit mempengaruhi metabolisme dan pertumbuhan mikroba. Tekanan hidrostatik yang lebih tinggi lagi dapat menghambat atau menghentikan pertumbuhan, oleh karena tekanan hidrostatik tinggi dapat menghambat sintesis RNA, DNA, dan protein, serta mengganggu fungsi transport membran sel maupun mengurangi aktivitas berbagai macam enzim.Tekanan diatas 100.000 pound/inchi2 menyebabkan denaturasi protein. Akan tetapi ada mikroba yang tahan hidup pada tekanan tinggi (mikroba barotoleran), dan ada mikroba yang tumbuh optimal pada tekanan tinggi sampai 16.000 pound/inchi2 (barofil). Mikroba yang hidup di laut dalam umumnya adalah barofilik atau barotoleran. Sebagai contoh adalah bakteri Spirillum.  

h. Getaran 

       Getaran mekanik dapat merusakkan dinding sel dan membran sel mikroba. Oleh karena itu getaran mekanik banyak dipakai untuk memperoleh ekstrak sel mikroba. Isi sel dapat diperoleh dengan cara menggerus sel-sel dengan menggunakan abrasif atau dengan cara pembekuan kemudian dicairkan berulang kali. Getaran suara 100-10.000 x/ detik juga dapat digunakan untuk memecah sel.  

FAKTOR BIOTIK 

Di alam jarang sekali ditemukan mikroba yang hidup sebagai biakan murni, tetapi selalu berada dalam asosiasi dengan mikroba-mikroba lain. Antar mikroba dalam satu populasi atau antar populasi mikroba yang satu dengan yang lain saling berinteraksi. 

1. Interaksi dalam satu populasi mikroba. Interaksi antar mikrba dalam satu populasi yang sama ada dua macam, yaitu interaksi positif maupun negatif. Interaksi positif menyebabkan meningkatnya kecepatan pertumbuhan sebagai efek sampingnya. Meningkatnya kepadatan populasi, secara teoritis meningkatkan kecepatan pertumbuhan. Interaksi positif disebut juga kooperasi. Sebagai contoh adalah pertumbuhan satu sel mikroba menjadi koloni atau pertumbuhan pada fase lag (fase adaptasi). Interaksi negatif menyebabkan turunnya kecepatan pertumbuhan dengan meningkatnya kepadatan populasi. Misalnya populasi mikroba yang ditumbuhkan dalam substrat terbatas, atau adanya produk metabolik yang meracun. Interaksi negatif disebut juga kompetisi. Sebagai contoh jamur Fusarium dan Verticillium pada tanah sawah, dapat menghasilkan asam lemak dan H2S yang bersifat meracun.  

2. Interaksi antar berbagai macam populasi mikroba.  Apabila dua populasi yang berbeda berasosiasi, maka akan timbul berbagai macam interaksi. Interaksi tersebut menimbulkan pengaruh positif, negatif, ataupun tidak ada pengaruh antar populasi mikroba yang satu dengan yang lain. Nama masing-masing interaksi adalah sebagai berikut: 

a. Netralisme 

       Netralisme adalah hubungan antara dua populasi yang tidak saling mempengaruhi. Hal ini dapat terjadi pada kepadatan populasi yang sangat rendah atau secara fisik dipisahkan dalam mikrohabitat, serta populasi yang keluar dari habitat alamiahnya. Sebagai contoh interaksi antara mikroba allocthonous (nonindigenous) dengan mikroba autochthonous (indigenous), dan antar mikroba nonindigenous di atmosfer yang kepadatan populasinya sangat rendah. Netralisme juga terjadi pada keadaan mikroba tidak aktif, misal dalam keadaan kering beku, atau fase istirahat (spora, kista). 

b. Komensalisme 

      Hubungan komensalisme antara dua populasi terjadi apabila satu populasi diuntungkan tetapi populasi lain tidak terpengaruh. Contohnya adalah: – Bakteri Flavobacterium brevis dapat menghasilkan ekskresi sistein. Sistein dapat digunakan oleh Legionella pneumophila. – Desulfovibrio mensuplai asetat dan H2 untuk respirasi anaerobik Methanobacterium. 

c. Sinergisme

       Suatu bentuk asosiasi yang menyebabkan terjadinya suatu kemampuan untuk dapat melakukan perubahan kimia tertentu di dalam substrat. Apabila asosiasi melibatkan 2 populasi atau lebih dalam keperluan nutrisi bersama, maka disebut sintropisme. Sintropisme sangat penting dalam peruraian bahan organik tanah, atau proses pembersihan air secara alami. Contoh sinergisme: Streptococcus faecalis dan Escherichia coli E. coli Arginine Agmatine S. faecalis E. coli Putrescine Contoh sintropisme: Senyawa A Populasi mikroba 1 Senyawa B Populasi mikroba 2 Senyawa C Populasi mikroba 3 Energi dan hasil akhir 

d. Mutualisme (Simbiosis)

Mutualisme adalah asosiasi antara dua populasi mikroba yang keduanya saling tergantung dan sama-sama mendapat keuntungan. Mutualisme sering disebut juga simbiosis. Simbiosis bersifat sangat spesifik (khusus) dan salah satu populasi anggota simbiosis tidak dapat digantikan tempatnya oleh spesies lain yang mirip. Contohnya adalah Bakteri Rhizobium sp. yang hidup pada bintil akar tumbuhan kacang-kacangan. Contoh lain adalah Lichenes (Lichens), yang merupakan simbiosis antara alga sianobakteria dengan fungi. Alga (phycobiont) sebagai produser yang dapat menggunakan energi cahaya untuk menghasilkan senyawa organik. Senyawa organik dapat digunakan oleh fungi (mycobiont), dan fungi memberikan bentuk perlindungan (selubung) dan transport nutrien / mineral serta membentuk faktor tumbuh untuk alga. OrnithineLichenes 

e. Kompetisi 

      Hubungan negatif antara 2 populasi mikroba yang keduanya mengalami kerugian. Peristiwa ini ditandai dengan menurunnya sel hidup dan pertumbuhannya. Kompetisi terjadi pada 2 populasi mikroba yang menggunakan nutrien / makanan yang sama, atau dalam eadaan nutrien terbatas. Contohnya adalah antara protozoa Paramaecium caudatum dengan Paramaecium aurelia.

   f. Amensalisme (Antagonisme) 

       Satu bentuk asosiasi antar spesies mikroba yang menyebabkan salah satu pihak dirugikan, pihak lain diuntungkan atau tidak terpengaruh apapun. Umumnya merupakan cara untuk melindungi diri terhadap populasi mikroba lain. Misalnya dengan menghasilkan senyawa asam, toksin, atau antibiotika. Contohnya adalah bakteri Acetobacter yang mengubah etanol menjadi asam asetat. Thiobacillus thiooxidans menghasilkan asam sulfat. Asam-asam tersebut dapat menghambat pertumbuhan bakteri lain. Bakteri amonifikasi menghasilkan ammonium yang dapat menghambat populasi Nitrobacter. 

 g. Parasitisme 

       Parasitisme terjadi antara dua populasi, opulasi satu diuntungkan (parasit) dan populasi lain dirugikan (host / inang). Umumnya parasitisme terjadi karena keperluan nutrisi dan bersifat spesifik. Ukuran parasit biasanya lebih kecil dari inangnya. Terjadinya parasitisme memerlukan kontak secara fisik maupun metabolik serta waktu kontak yang relatif lama. Contohnya adalah bakteri Bdellovibrio yang memparasit bakteri E. coli. Jamur Trichoderma sp. memparasit jamur Agaricus sp. 

h. Predasi 

       Hubungan predasi terjadi apabila satu organisme predator memangsa atau memakan dan mencerna organisme lain (prey). Umumnya predator berukuran lebih besar dibandingkan prey, dan peristiwanya berlangsung cepat. Contohnya adalah Protozoa (predator) dengan bakteri (prey). Protozoa Didinium nasutum (predator) dengan Paramaecium caudatum (prey). 

Special thank’s to : Yermia S. Mokosuli, S.Si, M.Si & Drs.H.M. Sumampouw, M.Pd sebagai dosen da pemberi materi

Presented By : Raldo Rasuh

About these ads
 
Leave a comment

Posted by on March 27, 2013 in Uncategorized

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

 
Follow

Get every new post delivered to your Inbox.

%d bloggers like this: